Improving Computational Performance of Genetic Algorithms: A Comparison of Techniques

نویسنده

  • Richard J. Povinelli
چکیده

A comparison of three methods for saving previously calculated fitness values across generations of a genetic algorithm is made. These methods lead to significant computational performance improvements. For real world problems, the computational effort spent on evaluating the fitness function far exceeds that of the genetic operators. As the population evolves, diversity usually diminishes. This causes the same chromosomes to be frequently reevaluated. By using appropriate data structures to store the evaluated fitness values of chromosomes, significant performance improvements are realized. Several different data structures are compared and contrasted. This paper shows that, for different sets of genetic algorithm parameters, including selection type, population size, and level of mutation, performance improvements are realized.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms

A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...

متن کامل

Application of Particle Swarm Optimization and Genetic Algorithm Techniques to Solve Bi-level Congestion Pricing Problems

The solutions used to solve bi-level congestion pricing problems are usually based on heuristic network optimization methods which may not be able to find the best solution for these type of problems. The application of meta-heuristic methods can be seen as viable alternative solutions but so far, it has not received enough attention by researchers in this field. Therefore, the objective of thi...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Optimizing a bi-objective preemptive multi-mode resource constrained project scheduling problem: NSGA-II and MOICA algorithms

The aim of a multi-mode resource-constrained project scheduling problem (MRCPSP) is to assign resource(s) with the restricted capacity to an execution mode of activities by considering relationship constraints, to achieve pre-determined objective(s). These goals vary with managers or decision makers of any organization who should determine suitable objective(s) considering organization strategi...

متن کامل

A New Approach to Software Cost Estimation by Improving Genetic Algorithm with Bat Algorithm

Because of the low accuracy of estimation and uncertainty of the techniques used in the past to Software Cost Estimation (SCE), software producers face a high risk in practice with regards to software projects and they often fail in such projects. Thus, SCE as a complex issue in software engineering requires new solutions, and researchers make an effort to make use of Meta-heuristic algorithms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000